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Abstract— The patterns of sales of manufactured products 
are sometimes complementary. That is a product may be 
considered by a consumer in the absence of its preferred close 
substitute. This consumer behavior often affects the eventual 
quantity sold or consumed. Modeling simultaneously sales of 
complementary products usually introduces residual effects 
because of the contemporaneous correlation existing between 
the products considered. Therefore, this study aims to develop 
and evaluate models for predicting the sales of Coca-cola and 
Pepsi carbonated soft drinks in Nigeria. Models that 
connected the quantity of carbonated soft drinks produced 
with the quantity sold were fitted using the SUR, OLS, 2SLS 
and 3SLS estimators. The results were compared to OLS 
estimates and evaluated by several statistical measures. We 
focused only on the assessment criteria for the estimated 
parameters from the various methods or estimators. Our 
results showed that the SUR estimator performed better in 
predicting quantity sold from Pepsi and Coca-cola drinks 
simultaneously than the other least squares based estimators 
considered using the estimated absolute biases and mean 
square errors. 

Keywords- Ordinary least squares, Seemingly unrelated 
regression, Two-stage least Square, Three-stage least square. 

I. INTRODUCTION 

Much of scientific studies are directed towards discovering 
the form of relationship between variables and predicting 
the value of a variable from some functional relationship. 
Many authors have discussed a number of multivariate 
regression topics that cut-across model building, 
forecasting and variable screening methods. In most cases, 
the position was that a good predictor variable � should be 
highly correlated with the response variable � and 

uncorrelated with other independent variables in regression 
models. This is intuitively reasonable and usually provides 
a set of independent variables that may lead to a 
satisfactory regression model. However, when two or more 
independent variables are highly correlated with each 
other, this demonstrate a condition referred to as 
multicollinearity and once one of the collinear variables is 
entered into the model, the entry of the second or other 
variables in the model will demonstrate non-significant 
results and little, if any increase in the model’s �� [1,2]. 

Consider a classical multivariate regression model of 
the form; 

                            � = �� + �                                (1) 

that involves � independent variables � =  ���,��,… ,��� 

and vector of � response variables  � =  (��,��,… ,��). It 
is generally assumed that vector � has a multivariate 

normal distribution with mean ��� and variance-covariance 
matrix ∑. In addition, the model’s error term  � is assumed 
to have a multivariate Gaussian density with zero mean 
and variance-covariance matrix ∑. Further assumptions on 
model (1)   are that of homogeneous variance of residuals 
conditional on predictors; common covariance structure 
across observations; and independence of observations [3]. 
If all of these assumptions are met, the least square 
estimator will be unbiased with minimum variance.  

A Seemingly Unrelated Regression (SUR) estimation 
technique is a method that estimates systems of a set of 
separate equations that are only correlated through their 
disturbances.  In the literature, such system of equations 
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that employs SUR technique for its estimation is often 
referred to as SUR models.  

The SUR models have found applications in many real 
life cases and some of which have been reported in the 
literature [1]. For example, demand functions can be 
estimated for different households (or household types) for 
a given commodity. The correlation among the equation 
disturbances could come from several sources such as 
correlated shocks to household income. Alternatively, one 
could model the demand of a household for different 
commodities, but adding-up constraints leads to 
restrictions on the parameters of different equations in this 
case.  

On the other hand, equations explaining some 
phenomenon in different cities, states, countries, firms or 
industries provide a natural application as these various 
entities are likely to be subjected to spillovers from 
economy-wide or worldwide shocks. 

There are two main motivations for the use of SUR 
model. The first one is to gain efficiency in estimation by 
combining information on different equations. The second 
motivation is to impose and/or test restrictions that involve 
parameters in different equations. Zellner [4] provided a 
seminar work in this area, and a thorough treatment is 
available in the books by Srivastava and Giles [5] while 
additional works on SUR can be found in [6-8].  

In this study, the application of the SUR model for 
predicting the quantity of carbonated drinks sold by two 
companies (Coca-cola and Pepsi ) as determined by their 
respective quantity produced is demonstrated. The 
assumption here is that the sales of Coca-cola products at a 
particular period might influence the sales of Pepsi 
products, though such influence might not be directly 
apparent and straightforward. This kind of relationship is 
referred to as contemporaneous relationship (correlation) 
since they seem to be unrelated but they are actually 
related 

 
II. MATERIALS AND METHODS 

A. The Seemingly Unrelated Regression Estimator 

Consider a complete system of m  regression equations of 
the form; 

 
 
where for i = 1, 2, …, m ,  �� is an n × 1 vector of 
observations on the ith response variable, X� is an n × �� 

matrix of independent variables, β� is a ��× 1 vector of 
regression parameters and �� is an n × 1 vector of error for 

the ith regression with ��~� (0,��
�). The whole system of 

m  regression models in (2) when stacked together 
becomes; 

                                   (3) 

In (3),  ��= (��,��,...,�� ) is a �� × 1 vector of 
responses, 

                               X = �
�� … 0
⋮ ⋱ ⋮
0 … ��

� 

is a �� × ∑ ��
�
���  matrix of observations on independent 

variables, β� = (β�,β�,...,β� ) is a∑ ��
�
��� × 1 vector of 

regression parameters while ε�= (��,...,�� ) is a �� × 1 
measurements on the error terms. 

Obviously, all the m regression equations in (2) or (3) 
appear seemingly unrelated because they, often times, 
contain different independent variables and parameters. 
Whereas, these system of equations are actually 
(contemporaneously) correlated through their error terms 
�′ = (��,...,�� ) with the condition that; 

                                        �(�,�′)= Ʃ⨂ ��                    (4) 

where Ʃ  is an � × �  variance-covariance matrix of the 
form; 

 

  

The quantity ��  is a n × �  identity matrix and ⨂  is a 
Kronecker product that ensures that each element in Ʃ 
 is multiplied by  �� . The parameters of the above 
system of equation (2) or (3) are estimated using the 
techniques of the Generalized Least Squares (GLS) as; 
 

                           ����� = (� ′Ω���)���′Ω���                  (5) 

where  Ω�� = Ʃ��⨂ �� .  
In the standard SUR estimations, the vector of 

disturbances �′ = (��,...,�� ) in the system of equation 
(2) are assumed to be significantly correlated [4]. In 
particular, Zellner[4] was of the opinion that the 
contemporaneous correlation should not be less than 0.3 
for SUR estimator to be more efficient. If these conditions 
are present, then the estimator in (2) becomes the SUR 
estimator given by;  

                            ����� = (� ′Ω�
��
�)���′Ω�

��
�                (6) 

where Ω�  is determined from the data. 

(2) 
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B. The Two-Stage Least Square Estimator 

If the regressors of one or more equations are correlated 
with the disturbances, the Ordinary Least Squares (OLS) 
and SUR estimates might be biased. This can be 
circumvented by a two-stage least squares (2SLS) or a 
three-stage least squares (3SLS) estimation with the use of 
instrumental variables (IV). The instrumental variables for 
each equation �� can be either different or identical for all 
equations. They must not be correlated with the 
disturbance terms of the corresponding equation. 

At the first stage, new (“fitted”) regressors are 
obtained by computing; 

                           ��� = ��(��′��)
����′��                    (7) 

Then, these fitted regressors are substituted for the original 
regressors in the equation (2) to obtain the 2SLS or 3SLS 
estimates of � as: 

                            ������ = (���Ω�����)����′Ω����               (8) 
 
C. The Ordinary Least Squares Estimator 
The OLS estimator of the stacked equation (2) or (3) above 
is given by; 
 

                                       ����� = (� ′�)���′�                   (9) 
The performances of the three estimators were 

assessed based on the average Absolute Bias (AB) and 
average Root Mean Square Errors (RMSE) of parameter 
estimates. 

III. ANALYSIS 

 

Simulation Scheme 
The simulation scheme used in this study was adapted 
from Yahya et. al [1] which considers system of equations 
containing four distinct linear regression equations here 
representing quantity produced and quantity sold for Pepsi 
and Coca-cola carbonated soft drinks. If we let the four 
equations be distributed as follows:  

 ��|��~� (����,���
� );  

 ��|��~� (����,���
� );  

 ��|��~� (����,���
� ); 

��|��~� (����,���
� ). 

Thus, with � = 4, we have the following system of 
regression models; 

�� = ��
′ �� + �� 

�� = ��
′ �� + �� 

�� = ��
′ �� + �� 

�� = ��
′ �� + �� 

where �� and �� represent the quantity sold of Pepsi 
products during the raining and dry seasons while ��and �� 
represent the quantity sold of Coca-cola products during 
the raining and dry seasons respectively. 

The whole system is assumed to be distributed as; 
(�|�)~��(��,Ʃ⨂ ��) 

The covariates and the parameters are therefore defined as 
follow; 

��
′ = (���,���);  ��

′ = (���,���) 
��

′ = (���,���);  ��
′ = (���,���) 

��
′ = (���,���);  ��

′ = (���,���) 
��

′ = (���,���);  ��
′ = (���,���) 

In the above representations, ��� and ��� represent the 
factory production level of Pepsi products during the 
raining and dry seasons while ,��� and ��� represent the 
factory production level of Coca-cola products during the 
raining and dry seasons respectively. 

The true values of the parameters of the four models as 
used in the Monte-Carlo studies here and later reported in 
Tables 1 and 2 were determined from the OLS fitted to the 
real life data that were collected from the two companies 
that are producing the two carbonated drinks in Nigeria. 
Thus, the estimated parameters based on equation-by-
equation fit of the least squares model to the real life data 
were used as the true values of the parameters to simulate 
dataset for Monte-Carlo study carried out here.  

The entire model was, however simulated and 
estimated using the three estimators considered (SUR, 
OLS, 2SLS) here at various sample sizes (n); n = 20, 50, 
100, 200, 500, 1000 over 1000 replicates in each case. 
Results of the 3SLS were essentially similar to those of 
2SLS, hence, they were dropped from our discussion in 
this study, except in few cases.  

IV. RESULTS 

The results of the three estimators at the selected various 
sample sizes are presented in Tables 1 and 2. 
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Table 1: Simulation Result For OLS, SUR and 2SLS at Small Sample Sizes � = 20,50. NB: (*) Indicates the true values of 
the models’ parameter as determined from the OLS fitted to the real life data.  

 

Sample Size Parameters 
*TRUE 

VALUES 
OLS SUR 2SLS 

 
 
 
� = 20 

��� -16645.4 -16849.3 -18127 -17095.2 

��� 0.98 0.98 0.98 0.98 
��� 74949.08 80429.42 80152.91 80429.42 

��� 0.76 0.75 0.75 0.75 

��� 85507.84 87642.45 86796.87 84874.79 

��� 0.68 0.68 0.68 0.68 

��� -16310.7 -18451.3 -18608.6 -37753.2 

��� 1.00 1.00 1.00 1.04 
 
 
 
� = 50 

��� -16645.4 -18287.1 -16496.7 -17444.8 

��� 0.98 0.98 0.98 0.98 

��� 74949.08 74166.02 76520.01 74166.02 

��� 0.76 0.76 0.76 0.76 

��� 85507.84 82451 84986.73 81695.35 

��� 0.68 0.69 0.68 0.69 

��� -16310.7 -19438 -19088.1 -39260.5 

��� 1.00 1.01 1.00 1.04 
. 
Table 2: Simulation Result For OLS, SUR and 2SLS large Sample Sizes � = 500,1000. NB: (*) Indicates the true values of 

the models’ parameter as determined from the OLS fitted to the real life data. 

Sample Size Parameters 
*TRUE 

VALUES 
OLS SUR 2SLS 

 
 
 
� = 500 

��� -16645.4 -17088.2 -17028.3 -17457.6 
��� 0.98 0.98 0.98 0.98 
��� 74949.08 73989.01 74456.45 73989.01 
��� 0.76 0.76 0.76 0.76 
��� 85507.84 85462.63 85243 84563.95 
��� 0.68 0.68 0.68 0.68 
��� -16310.7 -14373.8 -15894.6 -16919.4 
��� 1.00 1.00 1.00 1.00 

 
 
 
� = 1000 

��� -16645.4 -16731.4 -16617.6 -16708.6 
��� 0.98 0.98 0.98 0.98 
��� 74949.08 75021.57 75074.74 75021.57 
��� 0.76 0.76 0.76 0.76 
��� 85507.84 85302 85381.61 85394.58 
��� 0.68 0.68 0.68 0.68 
��� -16310.7 -16172.3 -16147.6 -16156 
��� 1.00 1.00 1.00 1.00 
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Fig 1: The plots of Absolute Bias at various sample sizes 
 
Table 3: Average Mean Squared Error of The Estimators 
at Various Sample Sizes 

Sample 
Size 

MSE-
OLS 

MSE-
SUR 

MSE-
2SLS 

MSE-
3SLS 

20 1.57E+10 7.19E+09 1.85E+12 1.85E+12 

50 5.59E+09 2.46E+09 4.96E+10 4.96E+10 

100 3.12E+09 1.24E+09 1.09E+10 1.09E+10 

200 1.39E+09 5.44E+08 4.67E+09 4.67E+09 

500 5.38E+08 2.2E+08 1.72E+09 1.72E+09 

1000 2.5E+08 96998208 8.35E+08 8.35E+08 

 

V. DISCUSSION 

In this work the performances of SUR estimators were 
compared with other three (OLS, 2SLS) estimators for 
modelling a system of simultaneous equation were 
examined. Dataset on quantity produced and sole of Coca-
cola and Pepsi carbonated soft drinks were employed to 
demonstrate different behaviours of the three estimators 
considered via Monte Carlo experiment. 

Various results obtained showed the supremacy of the 
SUR estimator over others at various sample sizes 
considered. In all cases, the SUR estimator has the least 
values of RMSE and AB at all the sample sizes considered.  

In Tables 1 and 2, the estimated parameter values of 
the models as yielded by the three estimators and the true 
parameter values are provided for small and large samples 
respectively. The closeness of the estimated parameter 
values to their true values as provided by the three 
estimators are provided by their Mean Square Errors 
(MSEs) as reported in Table 3. The plots of the average 
Absolute Bias and RMSE of the three estimators at the 
various sample sizes considered are provided by Figs 1 and 
2 where it can be clearly observed that the SUR estimator 
is most efficient among the estimators considered. 
However, the graphs showing the performances (Absolute 
Bias & RMSE) of the 3SLS were equally reported in the 
two plots. As earlier remarked, its performances were 
essentially similar to those of the 2SLS as can be observed 
from Figs 1 and 2.  
 

 
 

Fig 2: The plots of RMSE at various sample sizes 

VI. CONCLUSION  

This study compared the efficiency of three estimators 
(OLS, SUR and 2SLS) for modeling a system of regression 
models via Monte-Carlo studies. The results showed that 
the SUR estimator was most efficient among the three. 
This good performance of SUR might not be unconnected 
to the evidence of high contemporaneous relationship 
between the models’ error terms.  
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Interestingly, the OLS estimator clearly followed the 
SUR estimator in term of performance with the 2SLS 
being the worst among the three. However, the good 
performance of OLS over the 2SLS could be attributed to 
the fact that each of the models contains only one 
independent variable. Hence, there is no effect of 
multicollinearity in the models which naturally enhance the 
efficiency of OLS estimator. 
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